Proficiency Variants of Gender in Relating Model Learning To Functional Applications: Its Socio-Human Capital Development Implications for Nigerian University Organizations

1Okechukwu Dominic, Nwankwo and 2Joy Chinwe, Obunadike

1Division of General Studies, Anambra State University, Igbariam Campus, P.M.B. 6059, Awka, Anambra State, Nigeria
2Primary Education Studies, Nwafor Orizu College of Education, Nsugbe Anambra State, Nigeria.

Corresponding Author: Okechukwu Dominic, Nwankwo

Abstract
This is an empirical study on the proficiency variants of gender in relating model learning to functional applications. The socio-human capital development implications of the study for Nigerian University organizations were also appraised. Two fundamental hypotheses were tested in the study at P<.05 significance level. The first hypothesis examined gender proficiency differences in relating model learning to socio-human applications. And the second hypothesis examined the differences in functional relatedness of model learning to various socio-human applications as perceived by the genders. Primary data source accessed from the first-year University students end of semester quiz were used in the study. The quiz assessed the scientific, social, and managerial socio-human applications. Each application area had 10 quiz-items to be completed within 10 minutes to score 10 point (30 quiz-items, 30 minutes, and 30 points) on the whole. The participants had about 5 months formal experience of their model learning, irrespective of their general cum residual life experiences. They were systematically sampled from over 3000 first-year students of Anambra State University, Uli, Anambra state, Nigeria. The sample was three hundred and forty eight (348) of 174 participants for each gender. The study had 2 x 3 factional design, multivariate, and descriptive statistics. It was found out that (1) both gender(s) were above average in their proficiency to relate model learning to its socio-human applications; and that (2) the functional relatedness of model learning to its socio-human applications was also above average. However, the interaction effects found out that (3) the female gender was more proficient than the male gender to relate model learning to its socio-human applications. However, the male gender was more proficient than the female gender to relate model learning to its managerial socio-human applications. The reasons for these outcomes could be attributed to motivation, interests, hereditary, socio-cultural socialization, and other individual differences that influence learning. It is therefore recommended that the female gender should be well encouraged to develop their functional inclinations. The Nigerian educational programmes cum curricula should also be made community-development friendly, even without losing their globalization embrace. Career and development programmes should be established in the Nigerian Universities to guide the youths on identifying and embellishing their potential.

Keywords: proficiency, gender, model-learning, socio-human, human-capital, Nigerian-university

BACKGROUND
Limited skills and knowledge, for instance in education, retard the male and female gender(s) proficiency to compete and embrace opportunities (Chilokwu, Chikelu, Eze, and Nwankwo, 2008). Skills and knowledge are acquired from learning so as to improve performance proficiency. Proficiency exists when an individual has developed the capacity to carry out a task well as a result of training and practice. Learning is a form of training that is aimed at promoting proficiency. Basically, training or learning assists an individual to know what to do, how to do it, and have adequate knowledge of the environment (Olusegun, 2007). Learning occurs through study, observation, and experience. The significant features of learning are that it (learning) influences behaviour and performance. By implication, learning leads to a relatively permanent change in behaviour tendency due to interactions with individuals’ environment. Learning can occur consciously and unconsciously. However, well motivated learning leads to an individual making concerted efforts to develop qualitative ability (Idoko, 2007) for handling challenges effectively.

Learning becomes functional when it assists an individual to have an insight into the relatedness of challenges, and how solutions to problem can be reached. Models of learning opportunities therefore involve skills and knowledge acquisition. This gives the competencies to perform a given task which helps individuals appreciate the relative importance of tasks. Finally, learning opportunities facilitate strive to achieve success. With this in mind, Nwankwo
Individuals differ in their abilities, achievement and general performance characteristics. These variations can be attributed to gender, experience, and their associated motivation, as Okafor (2007) had already observed that gender gap does not exist in intellectual make-up for the male and female gender(s). Hence, differences in the ability of the male and female gender(s) to identify socio-human applications of the model learning can be explained from individual basis rather than gender.

Consequently, gender proficiency variants in relating model learning to functional applications may be attributed to the socio-habitual characteristics of the learner either facilitated or inhibited by their individual intelligence. The distribution of these influencing factors is not skewed against a gender. However, an individual can predispose his performance for better or worse by embracing learning style or habit that may or may not be proficiency stimulating. For instance the sixth-grade adolescents in Nigeria seem to develop more proficiency in their social and business endeavours than techno-science, because of their more interactions with the former than the latter (Nwankwo, 2008).

In as much as individual factors have contributory influence on proficiency in relating model learning to functional applications, the learning systems such as the training techniques and facilities, as well as the learning environment, also have their effects too. Effective human-capital development in the learning environment like the University system requires proper planning of objectives and management of challenges (Obaji, 2008). This will enhance brainstorming and development of strategic thinking-style that is relevant in seeing the correlates between learning paradigms and their socio-human applications. The basic feature of good learning programmes is the proficiency to effect transfer of learning. This makes learning a purposeful behaviour that is attuned with community-based activities model of capacity-building for human development. Quality of learning becomes very high when learning programmes impact the right knowledge to the right individuals at the right time. And such knowledge is shared and put into action which improves performance (Amaesih, 2008).

Therefore, neither of the gender(s) is predetermined to exhibit better knowledge applications as a result of training or learning. Undoubtedly though, interests play a great role in gender performance concerning relating model learning to situational applicability. Thus, for the institutions of higher learning such as the University organization to be effective in its objective of human capital development, determined efforts must be made to enhance or promote proficiency in relating model learning to practical applications. This is a major way of promoting risk-bearing and daring entrepreneurship that transform ideas, finding and prototype knowledge/information into their human benefits (Iteku, Iteku, and Oku, 2007).

BACKGROUND OBJECTIVES AND HYPOTHESES TO THE STUDY

Often there are disparities in considerations given to the male and female gender(s). These arise from the perceptions that certain human endeavours are more apt to one gender than the other, due to differences in values, thought, behaviour, and communication ascribed to each gender (Milkiatu, 2007). Incidentally, these perceptions seem to be enduring on the socio-human dispositions to each gender. Similarly, there seems to be a spill-over of these dispositions into the learning environment such as the University system. Thus, the interest and career development of each gender are expected to incline towards the gender’s socialization models and roles. And by implication, it is expected that there should be variations in gender proficiency as regards relating model learning to functional and situational applications.

This study therefore aims at investigating a number of hypotheses. The first hypothesis is that (1) gender does not significantly differ on their proficiency to relate model learning to functional applications. The number second hypothesis investigates that (2) various socio-human applications do not differ significantly on their perceived functional relatedness to model learning. And finally, there are the interaction effects that (3) each gender does not differ significantly in their proficiency to relate model learning with various functional socio-human applications.

METHODOLOGY

The significance testing level of the hypotheses (propositions) was at P <.05. The data used in the study were of primary source obtained from the first-year University students’ end of semester quiz. The quiz assessed the students’ ability to identify and describe briefly the functional relevance of their respective courses of study for the development of the society. The quiz assessed three (3) areas of
socio-human development corresponding to three (3) fields of human endeavours: Scientific, social, and managerial socio-human applications of development. Each area had ten (10) questions to be completed within ten (10) minutes. Again, each question carried one (1) mark, so that a total of ten (10) marks were to be scored in each area. The questions needed not to be answered professionally bearing in mind that the participants barely had four (4) to five (5) months experience of their learning model. Yet correct answers should have academic, practical, or situational/logical relevance and applications. Thus, the ability to give correct answers for the ten (10) questions, as well as complete the ten (10) questions within time schedule were the bases for ascribing scores. The data attained interval scale.

The population of the study was first-year University students of Anambra State University, both Uli and Igbariam campuses, Anambra State, Nigeria. The population was characterized by diversities in age, gender, socio-culture, socio-economy, experience, religion, and other psychosocial qualities. It is virtually a diverse and normal population of youths with an average age of 23 years. Using a systematic sampling technique, three hundred and forty eight (348) first-year University students were sampled for the study. It was a symmetrical sampling of one hundred and seventy four (174) samples for each gender. The design of the study was a 2 x 3 factorial design. Factor A was composed of male and female factors, while factor B was composed of scientific, social, and managerial related socio-human applications.

Consequently, multivariant 2 x 3 statistical analyses with follow-up descriptive statistics were used to examine the performance of the participants. Extraneous variables in the study were controlled through randomization, elimination, and quality control.

RESULTS

With a multivariate analyses of the collected data, the first hypothesis of the study that gender does not significantly differ on their proficiency to relate model learning to functional application was accepted. Again, the second hypothesis that various socio-human applications do not significantly differ on their perceived functional relatedness to model learning was also accepted. However, the interaction-effects third hypothesis that each gender does not significantly differ in their proficiency to relate model learning with various socio-human applications was rejected. The significance testing of the result is presented in table 1.1 below.

Table 1.1: Gender multivariant analyses in relating model learning to functional application.

<table>
<thead>
<tr>
<th>Variable Sources</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F-ratio</th>
<th>P<.05</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (A)</td>
<td>1</td>
<td>6.90</td>
<td>6.90</td>
<td>1.9328</td>
<td>3.86</td>
<td>Non significant</td>
</tr>
<tr>
<td>Socio-Human Applications (B)</td>
<td>2</td>
<td>7.70</td>
<td>3.85</td>
<td>1.0784</td>
<td>3.02</td>
<td>Non significant</td>
</tr>
<tr>
<td>Gender x Socio-Human Application (A,B)</td>
<td>2</td>
<td>29.90</td>
<td>14.95</td>
<td>4.1877</td>
<td>3.02</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Within 342 1220.78 3.57
Total 347 1251.48

Critical Values (df=1;342) F-Ratio @ P<.05 @ 3.86 & 3.02) Accept Factors A&B, but reject A

Analyses of table 1.1 above showed that for FACTOR A (GENDER) the observed/calculated F-ratio value (1.9328) was lesser than its critical F-table value (3.86). It implied that the hypothesis, which stated that gender did not significantly differ on their proficiency to relate model learning to functional applications, was accepted. This meant that both the male and the female gender(s) had sameness in the ability to relate acquired knowledge to its socio-human applications. Similarly, for FACTOR B (Socio-Human Applications), the calculated/observed F-ratio value (1.0784) was lesser than the critical F-table value (3.02). It implied that the hypothesis which stated that, various socio-human applications do not differ significantly on their perceived functional relatedness to model learning, was accepted. This meant that different areas of socio-human activities had sameness characteristics of their being found functionally relevant in model learning.

Finally, for the INTERACTION EFFECTS (A.B), the calculated/observed F-ratio value (4.1877) was greater than the F-table value (3.02). By implication the hypothesis which stated that, each gender does not differ significantly in their proficiency to relate model learning with functional socio-human applications, was rejected. It signified that each gender more or less had a peculiarity in relating model learning to socio-human applications. It is therefore worthwhile considering the descriptive dimensions of the significance testing.

This is done with the descriptive statistics of table 1.2 below. The table shows the relative characteristics of the significance testing. It espouses the degree to which each gender is able to relate learnt or acquired knowledge to its functional (socio-human) applications.
TABLE 1.2: DESCRIPTIVE ANALYSES IN RELATING MODEL LEARNING TO SOCIO-HUMAN APPLICATIONS.

<table>
<thead>
<tr>
<th>Factors/Variables</th>
<th>X</th>
<th>N</th>
<th>%</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor A (Gender)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5.76</td>
<td>174</td>
<td>48.81</td>
<td>5.56</td>
</tr>
<tr>
<td>Female</td>
<td>6.04</td>
<td>174</td>
<td>51.19</td>
<td>5.88</td>
</tr>
<tr>
<td>Total</td>
<td>11.80</td>
<td>348</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Critical mean</td>
<td>~ 5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor B (Socio-Human Application)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Application</td>
<td>6.07</td>
<td>116</td>
<td>34.29</td>
<td>2.18</td>
</tr>
<tr>
<td>Social Application</td>
<td>5.71</td>
<td>116</td>
<td>32.26</td>
<td>1.80</td>
</tr>
<tr>
<td>Managerial Application</td>
<td>5.92</td>
<td>116</td>
<td>33.45</td>
<td>1.68</td>
</tr>
<tr>
<td>Total</td>
<td>17.7</td>
<td>348</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Critical mean</td>
<td>~ 5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction Effects (A.B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, and Scientific Application</td>
<td>5.95</td>
<td>58</td>
<td>16.81</td>
<td>2.16</td>
</tr>
<tr>
<td>Male, and Social Application</td>
<td>5.29</td>
<td>58</td>
<td>14.96</td>
<td>1.62</td>
</tr>
<tr>
<td>Male, and Managerial Application</td>
<td>6.03</td>
<td>58</td>
<td>17.04</td>
<td>1.64</td>
</tr>
<tr>
<td>Female, and Scientific Application</td>
<td>6.19</td>
<td>58</td>
<td>17.49</td>
<td>2.22</td>
</tr>
<tr>
<td>Female, and Social Application</td>
<td>6.12</td>
<td>58</td>
<td>17.29</td>
<td>1.88</td>
</tr>
<tr>
<td>Female, and Managerial Application</td>
<td>5.81</td>
<td>58</td>
<td>16.42</td>
<td>1.78</td>
</tr>
<tr>
<td>Total</td>
<td>35.39</td>
<td>348</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Critical mean</td>
<td>~ 5.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From the analyses of the table 1.2 above, FACTOR A (GENDER) showed that the mean and percentage for the male gender (5.76/48.81%) was lesser than that for the female gender (6.04/51.19%). This indicated that the female gender was more proficient than the male gender in relating model learning to its socio-human applications. However, the result/finding of the table 1.1 had previously proved that this difference was not significant to be of any considerable importance in gender performance. Yet, since the respective means (xs) for the male gender (5.76) and the female gender (6.04) were both greater than the common critical mean (5.00), it implied that the proficiency to relate model learning to its socio-human applications were too tight and too consistent. It meant that both gender(s) were too close to each other on how they were related to model learning. Furthermore, the standard deviation of 5.56 for the male gender showed that the male gender was relatively intra inconsistent in their intra proficiency to relate model learning to its socio-human applications.

The same intra inconsistency can also be said of the female gender with the standard deviation (SD) of 5.88. Nevertheless, with a standard deviation (SD) difference of 0.32 ie (5.85 – 5.56), there was inter gender consistency between the male and female gender(s) in the proficiency to relate model learning to its socio-human applications. Thus, the male and female gender(s) did not show variations from each other in their proficiency to relate model learning to its socio-human applications. Any such variations could be explained as emanating from personal characteristics rather than gender attributes.

Again, for FACTOR B (SOCIO-HUMAN APPLICATIONS), scientific applications had the highest mean and percentage values of 6.07/34.29%, followed by managerial applications with the mean and percentage of 5.92/33.45%, and the least social application with the mean and percentage of 5.71/32.26%. The results showed that the three domains of socio-human applications differed from one another on how they were related to model learning. Again, the finding of the table 1.1 had already proved that the existing differences were not significant for meaningful considerations. However, the means (xs) of scientific (6.07), social (5.71), and managerial (5.92) applications were all greater than their common critical mean (5.00). It implies that the three domains of socio-human applications could be related to model learning. In other words, the proficiency to apply model learning to scientific, social and managerial domains of socio-human existence was high (above average). The standard deviations (SDs) were 2.18, 1.80, and 1.68 for scientific, social, and managerial applications respectively. It meant that the proficiency to relate model learning to socio-human applications was rather consistent for social and managerial socio-human aspects of existence than the scientific aspect. Furthermore, for the INTERACTION EFFECTS (A.B), the result had already been proved very significant in the table 1.1. Consequently, it can be categorically stated with reference to the INTERACTION EFFECTS (A.B) that: The female gender was more proficient than their male counterpart to relate model learning to its scientific socio-human applications (6.19/17.49%), and social socio-human applications (6.12/17.29%). However, the male gender on the other hand was more proficient than their female counterpart to relate model learning to its managerial socio-human applications (6.03/17.04%). With a standard deviation (SD) range of 0.60, ie (2.22-1.62), it could be said that the variations among the gender(s) and socio-human applications were too tight and too consistent. It implied that both gender(s) were too close to each other in relating model learning to various socio-human applications. Again, with the various means (xs) of the interaction effects being greater than their common critical mean (5.00), it means that both gender(s) were above average proficient in relating model learning to its functional and socio-human applications.

DISCUSSIONS
Having had a clearer appreciation of the results, findings and their implications, thorough discussions of them are therefore worth making. Firstly, this is done with reference to gender proficiency to relate model learning to functional applications. Secondly, discussions are also made on socio-human applications and their functional relatedness to model learning. Finally recommendations are preferred based on the findings and their implications.
Gender Proficiency to Relate Model Learning to Functional Applications

The findings of the study were that the female gender was more proficient than the male gender to relate model learning to its socio-human applications. The female gender was specifically more proficient than the male counterpart to relate model learning to scientific and social aspects of socio-human applications. Further reassessments are therefore required of the Okafor’s (2007) note that gender variations do not exist in intellectual characteristics. The findings of this study have proved that cognitive variations do exist between the male and female gender(s). Nevertheless the variations are not significant to attract considerable attention.

Perhaps it is worth emphasizing that these variations could be attributed to socio-economic and environmental stimulations and motivation, than gender or biological blueprint of performance. Yet the implications of the findings of this study should not be overemphasized or overstretched in the course of human endeavours. The relevance of proficiency tests in human endeavours is one major importance of the findings of this study. Through proficiency tests, the aptitude, dexterity, personality, potential, competence, abilities, intelligence, and other performance qualities of individuals can be ascertained (Nnabuko, and Ogbadu, 2006). The University organizations should therefore encourage each gender not to suppress their potential for certain socio-human endeavours, by perceiving some courses or fields of human endeavours as being dominated by or reserved for a particular gender.

Basically, physiology has predisposed the male and female gender(s) for certain socio-human endeavours. However, this should not be over-stretched to incorporate all facets of human existence such as cognition. Such over-stretching has occasioned deprivations based on ethnicity, race, religion, as well as gender under consideration. The performance of the female gender in this study indicated that she can equally compete with the male gender in socio-human endeavours. The findings also tend to indicate that any under-achievement in the female gender’s performance could be traced to the societal attitudes towards her than her physiological gender personality. In Nigeria for instance, during the colonial era, the female gender was under paid (Sambo, 2006). By not competing strongly with the male gender in many socio-human endeavours could be an ample indicator of reminiscence of how the Nigerian society has inhibited the female gender’s potential. The University organizations should therefore be the useful rebuilding or reorienting system and structure that will uncover the social biases, as well as give the quality education that will help break the social barriers of gender inequalities (Odoemenam, 2008).

On the overall, the female gender performed better than the male gender. The predictive implications of this are very obvious. The female gender is equally very capable of being the human resources for the socio-human development. Each gender is undoubtedly very insightful. Gender performance excellence is therefore most likely to be a function of societal support and encouragement. It is such support and encouragement that the female gender essentially needs in Nigeria for their potential to be put to functional socio-human benefits. The challenge of decline in the male gender enrolment into educational opportunities in Nigeria could present another challenge for the female gender to take up initiative leadership in socio-human endeavours. However, this is contingent on the female gender improving her skills, ambitions, educational qualities and qualifications (Egbue, 2002).

It is a fundamental fact that the socio-human development is a function of teamwork, networking, cooperation, and integration. Consequently, there is need to encourage knowledge sharing and communities of practice (goal motivated work team) of both gender(s). This will help in embellishing experiences necessary for achievement. Having been sidelined for long, the female gender needs such experience to enhance her functional performance. Unfortunately, knowledge sharing is the weakest link in knowledge management (Richards, and Goh, 1995). This should be discouraged while inculcating learning. The Nigerian University youths should be encouraged to develop team spirit devoid of exploitations and cheating.

Application of Model Learning to Socio-Human Endeavours and Implications for Nigeria University Organizations

The findings of the study showed that scientific aspects of socio-human endeavours were easily related to model learning. Ranking next to science in the application of model learning was managerial aspect of socio-human endeavours. And finally, managerial aspect was followed by social aspect of socio-human endeavours. Perhaps the socio-environment in which the study was conducted was characterized by high level of manipulative interactions as may be witnessed in the scientific and managerial socio-human endeavours. This is understandable bearing in mind that modern society is characterized by productive opportunities necessary for sustaining a self-sustaining growth (Omojimite and Ideh 2006). In the present 21st century, scientific and managerial skills play dominant roles in the productive opportunities. Thus the social application of model learning in socio-human endeavour was given barely average recognition.
Essentially, the educational system in the traditional African society was functional and vocational, whereby norms, skills, and trades were transmitted orally. Such model learning was based on how to use education to promote the unity and harmony of the community. Therefore in this study, the average score of the social application of model learning in socio-human endeavours could be attributed to a skewed influence of globalization in Nigeria, and among the youths in particular. In the traditional Africa, development was measure in terms of the ability to meet challenges of the society. This is unlike in the modern Africa where development is associated with techno-scientific opportunities (Inegbeboh, 2004). Actually, techno-scientific advancement is a plausible socio-human application of model learning. However, it should be used to enhance community based living. This is a major way of promoting and facilitating Appropriate Techno-science (AT) - national grown techno-science that is functional in solving socio-human challenges.

The outcome of this study is a great challenge to the management of the University organizations in Nigeria. The University education in Nigeria is eagerly embracing globalized educational performance without effective and harmonized efforts to integrate this emerging system into her socio-cultural institution. Consequently, the youths are not well attuned with the relevant applications of their educational development in the Nigerian socio-culture. The Nigerian University organizations therefore have it as their responsibility to use educational development to shape and reshape socio-human priorities (Nwankwor, 2003), especially among the Nigerian youths. It is a major way of using educational opportunities to rekindle healthy social norms of the society.

Possibly, Nigerian University students are very sensitive to change dynamics. Their performance in the study could be taken to indicate their cognizance of the socio-human developmental trends. The participants in this study could have related the model learning to change and development trends in the society, rather then how to use the model learning to effect changes and development. The average age (23 years) of the participants in the study is the age of youthful exuberance. It is a highly impressionable age period. It is not surprising therefore that the lure and enticement of techno-science and managerial activities prevalent in the globalized world could have influenced the perception responses or performance of the participants. Nigerian education should therefore be more qualitative than quantitative so as to serve socio-cultural values that will enhance community-need motivation development (Idah, 2008). Training objectives in Nigerian University organizations should therefore be geared towards promoting model learning that will achieve physical, moral, and intellectual transfer to socio-human endeavours. Learning or training is basically an input and output of knowledge and its application (Aja, 2008). In Nigerian University organizations, wholistic and qualitative inputs are required in their model learning so as to bring out wholistic and qualitative socio-human knowledge and learning applications. This is a comprehensive development trend that the Nigerian University organizations should direct and champion through model learning. Such model learning will embrace and stimulate change as a rational planning process that will use the past mistakes to correct and fit into the future situations and requirements (Idoko, 2008).

CONCLUSION
The study examined the proficiency variants of gender in relating model learning to socio-human applications. The human capital development implications of the study for Nigerian University organizations were also evaluated. The first tested hypothesis revealed that both the male and female gender(s) were equally above average in relating model learning to socio-human endeavours. Again, the second hypothesis showed that various socio-human applications did not differ significantly on their perceived functional relatedness to model learning. Nevertheless, further critical appraisal of the study revealed that the female gender was more proficient to relate model learning to its techno-scientific and social socio-human endeavours. This is unlike the male gender that was more proficient than the female counterpart to relate model learning to its managerial socio-human endeavours.

Basically, the female gender performed better than the male gender in the overall analyses of the study. This is a very important finding that will help break the gender barriers that inhibit or discourage the participation of the female gender in certain socio-human opportunities. The findings of the study are also of veritable significance in the planning, evaluation and management of the learning curricula and programme of the University system in Nigeria. Consequently, the following recommendations are therefore proffered.

RECOMMENDATIONS
With a successful completions of the study, a number of recommendations are therefore proffered bearing in mind the findings and implications of the study/findings.

Firstly, the gender biases that categorized certain socio-human endeavours for the male and female gender(s) need to be relinquished. Each gender should have the socio-human liberty to engage in any socio-human endeavours as directed by ability and by motivation. Hence, the Nigerian University organizations should encourage student not to refrain
from studying any course because it is dominated by a particular gender.

The Nigerian University organizations should used educational training to rekindle healthy social norms. Presently, it seems Nigerian educational systems, including that of the University, are over infatuated with adopting globalized educational compliance without effectively harmonizing this with the Nigerian socio-culture. This therefore makes Nigerian education skewed. Nigerian University organizations should therefore embrace the challenge of using University learning to shape and reshape wholistic development conducts.

The Nigerian University Commission (NUC) should re-strategize the planning, policy and learning curricula in the University system to be functional and community-oriented. This will bring about adaptive, societal and community friendly educational training. Ancillary to this is that many practical oriented educational curricula that have been abandoned or failed at the primary and secondary school levels should be re-examined and resuscitated.

The University organization should also establish model learning that embraces simulation. The insight and functional potential of both the male and female genders will be capture through this process. The programme evaluation of model learning will also be made easier through such simulations.

Again, the female gender in Nigeria should refrain from exhibiting helplessness and inferiority in their socio-human endeavours. She should brace up for the challenges of cognitive and functional competition of the information-age. She is equally as endowed as the male gender. By implications, she can empower and free herself from the socio-human retardations and development inhibitions. Consequently, the female gender in Nigeria should engage in self development that will extricate her from dependency nature. It is also recommended that gender rivalry and chauvinism should be discouraged early enough in the educational system. Perhaps the existence of these negative gender attitudes could be the reasons why the female gender tends to suppress her positive potential and replace them with what the society conventionally approves for the feminine gender. This happens even when she finds such socio-human endeavours unchallenging and uninteresting.

Furthermore, there is need for mutual assistance between the male and female gender(s). Encouragement and support should be given to each gender to develop their skills and potential. This will help enrich both gender(s) with experiences for competent functioning. This mutual assistance can also be established between the educational system and the youths bearing in mind the gender differences. This is a type of interaction that will promote guiding assistance on the educational, learning, and self-development of both genders according to their functional inclinations.

Finally, the trainers and other managers of the University education should embrace constant self-development. This will be of veritable necessity for them to update their skills and deliver effective and qualitative knowledge to the trainees (youths). As one does not give what one does not have, poorly developed trainers will not be sensitive to the youths’ potential so as to direct them appropriately. Such poorly developed trainers may be a discouragement to the youths. Or s/he may constantly violate values, ethics, and other soft skills requirements that are necessary to promote model learning and transfer of learning for both genders.

REFERENCES

