Obstacles in the Path of Implementing Technical/Vocational Education in Zimbabwean Secondary Schools: How can the situation be helped?

Mavis Rufaro Chikoore and Stanford Museva

Department of Technical Education: University of Zimbabwe

Corresponding Author: Mavis Rufaro Chikoore

Abstract

The study sought to establish the reasons for the decrease in number of schools offering Technical/Vocational Education in secondary schools in Zimbabwe as well as the perceptions of stakeholders on the country’s need for the particular kind of education. It was also meant to come up with strategies for effective implementing and sustaining the programme. It was motivated by the rate at which the number of schools offering the subjects were going down yet the programme was one of the major recommendations by the 1999 Presidential Commission of Inquiry into Education and Training. It was also the major hope for the country to revive its ailing economy. Ten Secondary schools were identified in Harare province from which two cases were purposively sampled. Participants included two heads of the selected schools, four Tech/Voc teachers and twenty Tech/Voc pupils selected by stratified random sampling. A structured interview was used to collect data from school heads, questionnaires were administered to Tech/Voc teachers, and focus group discussions were held with the two groups of pupils (each group with ten from each school). It was revealed through this study that the barriers to the implementation of the Tech/Voc curriculum in secondary schools basically emanated from an unconducive teaching and learning environment. According to the findings, this environment resulted from failure to communicate the vision to, and lack of professional development among implementers, inadequacy of the necessary resources, poor evaluation of the programme and finally, failure to sustain the programme. It was concluded that the implementation of Tech/Voc Education in secondary schools was confronted by a lot of constrains yet it remains a worthwhile move. It was therefore recommended that the careful planning that was done before the programme was implemented, be coupled with the creation of a context that is conducive to the changes brought in by the new subjects. This can be done through effectively communicating the vision of the programme to the implementers as well as upgrading their knowledge and skills, and providing the necessary resources to meet the demands of the programmes. Considering how the programme will be implemented and sustained at initial stages was also recommended. The study impacts education policy formulation and by way of informing the planners on the importance of piloting a project before it can be fully implemented so that assessment and evaluation can be done and redesigning carried out at minimal cost.

Keywords: sustainability, obstacles, attitudes, technical/vocational education, ‘o’ level

INTRODUCTION

Many governments the world over are doubling their efforts in promoting Tech/Voc Education with a firm and strong belief that skill formation enhances productivity and sustains competitiveness in the global economy. Strong debate on Tech/Voc Education has been going on in many countries including those in Africa since the late 1990s (Archoarena, 2005). This is because the subject was envisaged as a panacea to technological competencies in the education system and as an instrument for use in the reduction of youth unemployment. The debate has led several countries in Africa (Zimbabwe included) to reviewing their curricular at all levels of education with efforts to incorporate Tech/Voc Education, thus making the education system more efficient and effective (Nziramasanga, 1999 and Holmes, 2005).

Tech/Voc Education was introduced in the then Rhodesia in the so called F2 secondary schools which were specifically designed for the less academically gifted learners (Chinyamunzore, 1995). According to Nherera (1999), the learners in such schools were to be prepared as low skilled workers for industry. The discriminatory curriculum was subsequently abandoned soon after the country attained political independence in 1980. Together with many other changes introduced the then Ministry of Education incorporated Tech/Voc subjects into the conventional school system with special emphasis on Technical Education which is more of general education as opposed to skills training, the main focus for Vocational Education.
In Zimbabwe, the concept of Tech/Voc Education was re-introduced in secondary schools in the late 1990s. This was done in the spirit of developing appropriate skills and competencies among learners, and in an effort to combat youth unemployment, reduce levels of poverty among the society, and further contribute to social transformation. It was also aimed at empowering the youths with appropriate knowledge and skills so that they own the means of production and can run sustainable projects after learning school. They can therefore contribute to the nation’s Gross Domestic Product (GDP). Mupinga, Burnett and Redman (2005) point out that Tech/Voc Education was seen as a tool for serving the society’s needs for development. Unfortunately, up until now, the programme has not yielded any meaningful results.

Teferi (2011) and Lynch (2000) concur that Tech/Voc aimed at imparting to secondary school pupils, knowledge and skills for employment in either specific or cluster jobs, and enhancing general education.

STATEMENT OF THE PROBLEM
Despite the fact that the Tech/Voc Education programme has been introduced to secondary schools in Zimbabwe more than a decade from now (Coltart, 2012), most of the schools are not offering the subject and the number offering the subjects are actually dwindling. Zengeya (2007) points out that in Zimbabwe, by the year 2001, eighty-one secondary schools had introduced Tech/Voc education, and by the time of his study the figure had dropped to fifty-eight country wide. Examination of Tech/Voc Education at National certificate (N/C) level also registered their concern over the decreasing numbers of secondary schools offering the subjects as well as candidate over the years.

This observation is worrisome since the government had introduced the programme as a strategy for curbing unemployment among youths who might fail to make it to tertiary education. The programme was also meant to help the youths with skills to sustain themselves through self-help projects, thus transforming the technological knowledge process into wealth. This laudable idea has however failed to yield the much needed profit and dividend. This therefore is the thrust of this study.

PURPOSE OF THE STUDY
The purpose of the study was to establish strategies that could be employed to ensure sustainability of the Tech/Voc programme in secondary schools in Zimbabwe. This was to be done through identifying problems impeding the implementation of the programme as well as taping the perceptions of stakeholders on the value of the programme, challenges they could have observed and how best they thought the problems could be reiterated.

RESEARCH QUESTIONS
The major research question to be answered in this study was “How can the much needed Tech/Voc Education programme be sustained in secondary schools in Zimbabwe.”

The following sub-questions were set as guide to help answer the major research question:
- Why are the numbers of schools offering Tech/Voc Education going down?
- What are the perceptions of stakeholders on the country’s need for Tech/Voc Education?
- How can the implementation of Tech/Voc Education be improved so that more schools can sustain the programme?

SIGNIFICANCE OF THE STUDY
The study is of great significance to:
- The Ministry of Education, Sports, Arts and Culture as well as the Ministry of Higher and Tertiary Education as they both take part in the implementation of Tech/Voc Education, they study will provide information on the actual situation in secondary schools.
- Secondary school heads as managers in the institutions they lead will get the facts they need as a guide in decision making with respect to Tech/Voc Education.
- The teachers of Tech/Voc Education as implementers of the programme will get the opportunity to air their views on successes and challenges in the process of implementing Tech/Voc Education. The study also creates a platform for them to make recommendations for improvement in future.
- The learners as the intended beneficiaries will get the chance to participate in the assessment of the Tech/Voc Education programme and can propose how best they think their aspirations can be fulfilled.
- The research also contributes to addressing Millennium Development Goal (MDG) Number one whose focus is on poverty alleviation
- Future researchers for they will have an insight into what the situation could be like in the wider population.

DELTIMATIONS OF THE STUDY
The study was delimited to Secondary schools in Harare urban and only those schools offering Tech/Voc Education and those that have offered the subjects before since their introduction in the late 1990s. Only school heads, Tech/Voc teachers and pupils in the identified schools were eligible to participate in this study.
LIMITATIONS
This was a case study involving only two schools therefore the results are generalisable to the schools with similar backgrounds. A wider study would have permitted generalisation of findings to a wider spectrum but time and funding were restrictive factors. The researchers were both employed therefore time for field work was limited by the number of leave days they could secure at a given time otherwise a national survey would have been most appropriate. The highlighted limitations however do not take away anything from the study, it remains valid as an insight into issues surrounding the implementation of Tech/Voc Education in Zimbabwe and how best the situation can be helped.

LITERATURE REVIEW
The Rationale for Technical/Vocational Education (Tech/Voc)
Tech/Voc Education may be defined as the aspects of an educational system that involve the study of technological and other related science as well as the acquisition of practical skills, attitude understanding and knowledge relating to occupations in various sectors of economic and special lives of individuals (UNESCO, 2003). In agreement, Gordon, Parks and Castro (2012) concur by broadening the definition, they look at Tech/Voc Education as that which leads learners to the acquisition of knowledge, skills and technical knowhow necessary for employment in a particular trade, occupation or group of occupations.

Both definitions fundamentally indicate that Tech/Voc Education is a field of human endeavour responsible for developing practical skills and knowledge in preparation for work or future studies. It is therefore seen as a vehicle for the development of marketable and entrepreneurial skills needed for national development and sustainability of the country’s economy. This is further emphasised by Hoover, Buttram and Hord (2012) who point out that Tech/Voc Education entails preparation of learners mainly for occupations that require manipulative skills, this involves understanding of practical application of the basic principles of Mathematics and Science.

Holmes and Hannah (2005) present the aim of Tech/Voc Education as mainly to prepare learners for entry into the field of work either through employment or self-help projects. They further outline the objectives as: to meet manpower needs of a country or society; to enable learners to select careers wisely; and for poverty alleviation, thus addressing the first MDG.

Kigombe (2012) justifies the need for Tech/Voc Education by outlining its historical background, what is important to this study is the fact that most education came about through participation and preparation for work and adult life, thus, through interaction of knowledge and skills acquired with available technology.

Contextualising the purpose of Tech/Voc Education to Zimbabwe, Mupinga, et al (2005) identified several objectives: Tech/Voc Education was adopted in Zimbabwe to produce students who can come up with technological designs to solve problems. It was to provide a wide range of Tech/Voc subjects from which learners could choose, and to link Tech/Voc subjects to relevant Science and Engineering courses in tertiary institutions. In support to this, the then Minister of Education, Sport, Art and Culture added that Tech/Voc was meant to link learners with economic activities around their school environment, (Coltart, 2012).

Factors Influencing Curriculum Implementation
The success or failure in implementing an educational curriculum is dependent on several factors which include its publicity, feasibility, implementation challenges faced and sustainability. The success of curriculum implementation lies to a much greater extent on the levels to which the vision of the new programme is communicated to the implementers, how feasible the programme is and the effectiveness of the implementation process (Morphet and Ryan, 2004). Anticipated challenges of the implementation process as well as how the programme will be sustained also need to be considered right from the start (Tamir, 2004).

A report on the 48th session of UNESCO International Conference on Education (2008) reveals that there is a wide range of obstacles that inhibit effective implementation of the curriculum. Those outlined as directly affecting implementation include lack of a participating framework, poor planning, lack of capacity and political will, obsolete infrastructure, poor library facilities, ill-required laboratories and workshops, poor motivation of teachers and learners as well as lack of relevant skills and expertise by teachers as implementers of the curriculum. London (2011) shares the same views following a case study on reasons for failure in programme implementation.

Perceptions of Stakeholders on Tech/Voc Education
Generally, the society is hesitant in according respect or recognition to graduates of Tech/Voc Education since it is historically associated with under achievers (Azubuike, 2011). Parents in particular, do not encourage their children to take up Tech/Voc subjects partly due to the fact that blue collar jobs are still viewed as inferior to white collar ones and the other part is that they expect their children to be employed and to earn a salary as opposed to creating employment, (World Bank, 2011).
Parents’ attitudes toward Tech/Voc Education heavily influence their children’s perceptions towards such subjects hence Kingston (2011) and Teferi (2011) assert that children turn to their parents for advice. The unfortunate part is that most of the parents will be ignorant about the current value of Tech/Voc Education therefore urge their children to follow the traditional academic route. Kingston (2011) further points out that employers are also reluctant to recruit Tech/Voc graduates and would rather employ those with no background at all and offer on-the-job training. This is attributed to the employers’ uncertainty that Tech/Voc practitioners would successfully predict the needs of industry and effectively respond to them.

Greennan, Wu, Mustapha and Ncube (1998) express with deep concern the fact that school administrators encourage their pupils to stick to the academic route so as to keep open the possibility to go to university at a later stage. They also push the blame on the corporate world in the Tech/Voc sector and teachers for not giving the learners adequate advice on career guidance. The teachers on the other hand, appreciate the value of Tech/Voc Education but fail to convince their pupils, Hoover, et al (2012) and Greenann (1998) attribute this to pupils lack of trust of their teachers, they feel pushed down a particular route and left with very limited or no options. Azubuike (2011) however further pushes the blame on some academic subject teachers and school heads who openly look down upon Tech/Voc subjects, thus destroying the esteem of those pupils taking the subjects.

Enhancing Technical/Vocational Education
In line with Morphet and Ryan (2004), Hoover, et al (2012) outline the strategies for enhancing Tech/Voc Education programmes as: creating a conducive environment to implementation of the programme; developing and communicating the vision with the implementers; planning the implantation strategy and providing necessary resources, investing in professional development; monitoring and checking progress; and considering how the programme will be sustained.

Creating a conducive context involves considering culture and relationships between groups of people within and outside the school, resources needed, local and state policies and rules to be followed, demographics and physical facilities available. Communicating the vision to be implemented creates a collaborative approach and acts as a guide and informer that brings order and purpose to the otherwise complex challenges. Both parties will want to see the programme sail through. Allocation of resources which include money, time and personnel is critical since these are the major determinants of the success or failure of a programme, Kigombe, 2012.

School administrators and teachers, more often than not, fail to impart appropriate behaviours and skills demanded by a programme simply because they lack the technical knowhow. There is need for staff development, through seminars, workshops and in-service training to upgrade their capacities as alluded by Tamir (2004) and Teferi (2011). Problems or challenges are inevitable in the implementation of any programme despite the careful planning and preparations that could have been done. Monitoring and checking progress helps to identify such issues and concerns therefore permit their quick address, this therefore should be encouraged.

Most programmes start off well but eventually collapse because of lack of continued support. Usually, support systems are put in place at the planning stage but get lost along the way during implementation. To guard against such pitfalls, Kigombe (2012) asserts that assessment and formative evaluation exercises are critical tools necessary for determining progress and needs of a programme for it to continue running.

METHODOLOGY
The study followed a qualitative research approach since the focus was on cause and effect as well as perceptions and attitudes which called for an in-depth study, (Rossam and Rallis, 2003). Out of more than fifty secondary schools in Harare province, only ten were identified, that is, those that offered Tech/Voc subjects or might have offered them at some point in the past. Only two cases were purposively sampled, that is one from each of the two categories. A case study was opted for its benefits of permitting the researchers to answer why and how Tech/Voc education was not developing as it should in secondary schools. It permits an empirical inquiry of phenomena surrounding Tech/Voc Education within its real life context.

The school heads, Tech/Voc teachers and pupils within the two selected schools formed the population. That was, two heads, eight Tech/Voc teachers and twenty pupils who were selected through stratified random sampling from Tech/Voc classes (ten from each school). Structured interviews were held with the school heads, self administered questionnaires were distributed among the eight Tech/Voc teachers, and focus group discussions were conducted with the two groups of Tech/Voc pupils. The interviews gave the researchers an opportunity to seek further clarification through probing and to take note of certain expressions that helped in establishing whether information provided was reliable or not. The questionnaires gave the teachers room to express themselves fully without fear of being known. Focus group discussions gave the pupils a chance to quiz support or build on each others’ contributions under the guidance of the researcher. A pilot study was
done at two similar cases outside Harare to test the validity and reliability of instruments and necessary adjustments were made to refinement of instruments. Confidentiality was assured to all participants. There was 100% return rate of questionnaires since they were self administered and the teachers were given ample time to complete them. Focus group discussions were carried out after classes and pupils were very keen to participate. Data was presented thematically and analysed narratively.

RESULTS
Data collected from the three groups of respondents by use of all the three different data collection techniques were presented in themes and sub-themes through excerpts analysed narratively.

Reasons for the decline in schools offering Tech/Voc Education

Excerpt I

Theme 1: Ideological Challenges

Substantiating Evidence

Teacher, “We simply receive instructions from the top without being consulted.” “… it is very difficult to reinforce implementation of a programme you are not clear of.”

Substantiating Evidence

Lack of participatory framework:

Teacher, “There is too much sharing of equipment making it difficult to u to complete our projects.”

Teacher, “… of course we received equipment at the start of the programme but servicing and repairs hardly come by.”

School Head, “politicians talk highly about Tech/Voc Education in schools but we hardly see them coming to support us here.”

Lack of political will:

Substantiating Evidence

Pupil, “I cannot take Tech/Voc subjects because I will not be able to go to University”, “... I will get a lowly paying job,” “... I do not like manual work.”

Teachers, “Some parents usually come with well structured reasons to withdraw their children from the Tech/Voc class,” “On consultation days, parents usually come for Tech/Voc subjects last,” “... they even pay practical fees last and usually at around mid-term.”

School Heads, “We are more comfortable when our pupils do well in academic subjects because they can proceed to University therefore put our school in the map.”

Substantiating Evidence

Poor image of the teaching profession:

Pupils, “Our teacher stays in our cottage but has not paid rent yet ... she has no money.” “... Tech/voc teachers work very long hours and even detain us to work on our projects but do not get extra pay.”

Teachers, “… we cannot compare ourselves with fellow diploma holders elsewhere,” “They even train for as short as six months but get paid handsomely.”

School Heads, “… our teachers try hard to keep up appearance but their remuneration cannot take them far,” “… yes we try to encourage them but it is very difficult to make a disgruntled person work,” “pupils compare the teachers with their own parents and look down upon them.”

Theme 2: Curriculum Challenges

Substantiating Evidence

Poor Planning:

Pupils, “If you do not go for extra lessons, you will not finish your project items,” “The subjects are too many.”

Teachers, “We go out of our way for no extra penny to allow pupils to complete their projects,” “If we had been consulted as people on the ground, we were going to advise otherwise.”

Heads, “The Secondary School curriculum is overloaded, it is difficult for the greater percentage of pupils to carry the minimum load recommended,” “there are too many subjects for the average and weak performers.”

Obsolete curricular:

Pupils, “I think we should be allowed to drop some of the subjects at Form 3,” “I see no reason for me to study all those subjects only to utilize one of two at tertiary level.”

Teachers, “Content of the syllabi we are using no longer matches the demands of industry today.....an effective review is necessary.”

Theme 3: Instructional Challenges

Substantiating Evidence

Lack of capacity:

Pupils, “Our teachers tell us what to do but do not demonstrate how, they even get angry when we fail.”

Teachers, “We are not trained to teach the skills demanded by Tech/Voc subjects,” “I have never been to industry so how can I be expected to teach industrial skills?”

School Heads, “With appropriately trained personnel, I am sure the subjects can be vibrant, even the pupils are likely to enjoy.”

Poor library facilities:

Substantiating Evidence

Pupils, “We cannot find text books on Tech/Voc in the school library,” “We rely on our teachers’ books and file.”

Teachers, “The books in the library are very old and lack the contemporary knowledge and skills.”

School Heads, “The blame is on the teachers, they list textbooks that are not available on the local market.”
Theme 4: Financial Challenges

- Obsolete infrastructure:
 Substantiating Evidence
 Pupils, “The workshop is too crowded and hot.” “It is difficult to breathe and to see in there, it is quite hot.”
 Teachers, “Appropriate rooms with adequate ventilation, fittings and furniture are necessary.”
 School Heads, “… construction and renovations are the responsibility of the Ministry of Construction, we submit our requisitions in good time but they follow their list, “…equipment, yes but, it has to be buildings first then we furnish.”

- Lack of motivation among teachers:
 Substantiating Evidence
 Pupils, “We are always called in during our free time to work on our practical projects.”
 Teachers, “We are not paid for the extra hours, …we even go out of our way to acquire the appropriate skills at our own expense,” “… as for me, I trained as a Tech/Voc teacher for five good years only to get the same salary as the academic teacher who took only three years in training.”
 School Heads, “The Tech/Voc teachers surely sacrifice extra hours even during weekends and school holidays,…….remuneration is however a government responsibility, we might consider giving them incentives but other teachers will cry foul.”

Perceptions of Stakeholders on the Country’s Need for Tech/Voc Education

All the respondents concurred that Tech/Voc Education was important for individuals and for the national community. They however differed on recipients of the subjects. Teachers and school heads indicated that the subjects be made compulsory only up to basic education level for those who wish to pursue academic education while those pursuing Tech/Voc Education at tertiary level may continue. On the other hand, pupils generally felt that Tech/Voc Education should be offered only to those pupils weak in academic subjects and they should be allowed the freedom to choose rather than being assigned to a particular Tech/Voc subjects.

They perceived pupils taking Tech/voc subjects as overburdened and proposed that they be allowed to study less subjects.

All the respondents indicated that some parents were reluctant in paying practical subjects levy therefore making the school budget difficult to implement, this negatively impacted the pupils’ attitude towards Tech/Voc subjects. They all agreed that they did not look down upon Tech/Voc subjects but found them very difficult to implement with ailing resources.

Ways of Improving the Implementation of Tech/Voc Education

The pupils proposed that they should be allowed to study a Tech/Voc subject of their choice and to drop subjects that are not very relevant to the specific Tech/voc subject so that they remain with a manageable load. The teachers suggested that the Ministry of Higher and Tertiary Education should consider reducing the training period for Tech/Voc teachers. Together with school local authorities, the Ministry should consider awarding incentives to Tech/Voc teachers to motivate them to go an extra mile in preparing their classes. They further proposed that school authorities should priorities Tech/Voc Education since it is the major target to resuscitate the country’s ailing economy by ensuring that appropriate infrastructure and materials are availed.

Both Tech/Voc teachers and school heads challenged the Ministry of Education to design refresher and staff development programmes for the practical subject teachers who trained during the old system. They also suggested that teachers’ colleges should work closely with the Ministry of Education, Sport, Arts and Culture as well as Industry in designing their programmes so that the teacher produced is equipped enough to meet the needs of the country.

They asserted that parents should consider invitations to schools on consultation and open days as serious opportunities for them to see what Tech/Voc Education has to offer, schools usually showcase some of the products. They jointly suggested that the subjects should be examined by the Ministry of Education in which they are offered or else they be moved to tertiary education.

The school heads challenged the teachers to invite successful Tech/voc professionals to present to their classes, and to encourage the pupils to pursue Tech/voc Education in further studies. They also suggested that the Ministry of Education reviews the Education policies and design one that permits pupils to take up relevant subjects they can manage. They finally appealed to policy makers to come up with ideologies that support the much needed Tech/Voc Education by supporting the programme. This could be done through assisting schools in procuring the much needed equipment, materials and infrastructure.
as well as supporting fundraising programmes for sustaining the motion.

DISCUSSION

The general picture presented by the findings reveals that there are many problems that bar effective implementation of Tech/Voc Education this is in line with the UNESCO Report on Education (2008). These have been grouped into ideological, curriculum, instructional and financial challenges.

Ideological obstacles included lack of participatory framework, and political will, the status quo syndrome, low enrolment and poor image of the teaching profession. The participatory framework seemed to have sidelined the key stakeholders in education that is the pupils as beneficiaries and, the teachers as implementers. Co-opting them helps all parties involved to share the same vision as propounded by Morphet and Ryan (2004). Leaving out other stakeholders created problems of ownership sustainability and awareness on the part of Tech/Voc programme implementation. The responses pointed out that the programme was initially funded but lacked sustainability plans, the task is upon the central government to set aside funding for critical programmes and to follow up funded ones.

Status-quo syndrome entails efforts to maintain the most appreciated status. Although all the respondents valued Tech/Voc Education most of them still had a negative attitude towards it, this was found to be as a result of the belief that established models of educational operations and practices must be maintained unfortunately at the expense of newer ones. The results revealed that Tech/voc Education is still looked down upon by the general public of Zimbabwe as in any other African state, this is because they have been oriented to view white collar jobs as superior to blue collar ones. Kingston (2011) even points out that practically oriented subjects are associated with under-achievers and low paying jobs hence parents discourage their children form studying them.

One school indicated that they had since stopped offering Tech/voc subjects because student enrolment had gone as low as two pupils per class and the teachers were not keen to take the subjects. This could have resulted from lack of motivation by way of informing them about their future with Tech/voc Education, i.e. what will become of them as a result of the knowledge and skills acquired. The Tech/voc teachers revealed that their training took five years while the rest of the teachers trained for only three years, the additional two years need to be acknowledged and rewarded through better remuneration to keep them motivated and portraying a positive image of the Tech/voc teacher. Practical subject teachers from the old system were not keen to teach Tech/Voc subjects, they cited lack of appropriate knowledge and skills, they need to be capacitated through staff development programmes such as in-service training, workshops and seminars as recommended by Kingston (2011) and Greenann, et al (1998).

Curriculum challenges observed involved poor planning and use of obsolete curricular. The school heads revealed that the programme was a good move but was executed without adequate research done. This was contrary to Mupinga, et al’s (2004) proposal of carrying out a base-line survey before plans of any programme can be finalized. Skills taught were found to be no longer in use in modern industry yet Tech/voc Education is considered a ‘launch pad’ for technological development, (Holmes 2004). It was also noted that policy is adopted rather late, for example the two path-way education recommended by the Nziramasanga Commission (1999), which was implemented in 2006 (Education Circular Number P77 of 2006). Delays in implementation of policy makes products of Tech/Voc to be far from acquiring the much needed skills demanded by industry.

Instructional challenges identified by respondents included lack of capacity and poor library facilities. Some of the teachers found taking Tech/Voc classes were trained for general Technical Education rather than Tech/voc which focuses on specific manipulative skills as elaborated by Kigombe (2012). This creates a gap between the teacher and the content and makes them feel inferior and lack confidence. This was evidenced by the pupils’ observation that their teacher does not demonstrate skills but only point out where they go wrong. Hoover et al (2012) recommend that they should be staff developed to upgrade their capacities. Appropriately constructed, fitted and equipped rooms were hard to come by yet these and appropriately trained manpower are necessary for the attainment of goals anchored on efficiency and competency. Both teachers and school heads proposed appropriate training and/or staff development programmes for the Tech/voc teachers.

Financial challenges were reflected through obsolete infrastructure and lack of motivation among teachers. Most of the buildings used were old and called for renovations and modification to match today’s workshops. Most of the equipment used was old and outdated in some cases. There is need to service and to replenish some with new machinery that matches standards currently used in industry today. Funding was therefore found to be the key driver in the implementation of any new programme and should be considered right from the planning stage as suggested by Tamir (2004). A sound financial base facilitates the designing and construction of appropriate buildings, inclusion of necessary fittings,
procurement of appropriate furniture, equipment and materials as well as employing appropriately trained and experienced personnel who are frequently upgraded to keep pace with technological advancement. Adequate funding also permits curriculum review within reasonable time frame.

CONCLUSION

Based on the findings, it was concluded that there are numerous obstacles that inhibit effective implementation of Tech/Voc Education in secondary schools in Zimbabwe. These can be ideological, curriculum related, instructional or financial. All the respondents perceived Tech/voc Education as an essential tool for national development but some had a negative attitude towards the subjects due to historical practices that led to the subjects being associated with under-achievers and lowly paying jobs. They also felt that the programme is better placed in tertiary institutions with mature students. Most of the identified challenges if not all including stigmatization may be overcome by engaging all key stakeholders from the planning stage, communicating the vision with them and putting in place adequate funding for implementation and sustainability. The negative attitude towards Tech/Voc subjects cannot be eradicated by any explanation but through witnessing of tangible success stories of the programme.

RECOMMENDATIONS

In line with the conclusions made, it is recommended that:

• Curriculum designers synchronise subject content of Tech/voc Education offered in schools with that offered in tertiary and higher learning institutions so that learners can clearly map out their line of study up to the highest levels.

• School heads ensure that both Tech/voc teachers and learners are exposed to industrial experiences relevant to their areas of specialization during the teaching and learning process.

• School administration sponsors Tech/voc teachers to relevant conferences and workshops for professional enrichment.

• The government through the Ministry of Higher and Tertiary Education mandatorily offer in-service training and refresher courses to Tech/voc teachers so that they acquire appropriate knowledge and skills and keep pace with technological advancement and current demands of industry.

• The government through state universities and tertiary institutions offering Tech/voc Education engages in public awareness campaigns on the significance and potential role of Tech/voc Education in national development.

• Commercial houses and manufacturing industries sponsor the Tech/voc Education programme in schools within their communities and beyond since they are the intended beneficiaries.

• The Government and Non-Governmental Organisation sponsor candidates who wish to study Tech/Voc subjects as a bait to attract more learner to take up the programme.

• The government through the Ministry of Finance as the national fiscal body sets aside from the national budget, adequate funds for planning, implementing, co-ordinating and sustaining Tech/Voc programmes in schools.

• Non-Governmental Organisations, the business fraternity and School Development Associations (SDAs) augments the government’s efforts by assisting Tech/voc programmes in secondary schools within their local communities.

• With funds permitting, future research focuses on a national survey to get a broader perspective since this was a case study which gave an insightful picture.

REFERENCES

